Cyber-Physical Fabrication Platform: Fluid Fabrication

Research Project 4-2 (RP 4-2)

CYBER‐PHYSICAL FABRICATION PLATFORM: FLUID FABRICATION – EXTENDING THE ADAPTIVITY OF ISLAND-BASED FABRICATION AND THE DESIGN-TO-FABRICATION RECIPROCITY THROUGH MULTI-UNIT COLLABORATION

This research project aims to develop a cyber-physical on- and offsite prefabrication platform for the IntCDC wood building system. It will address prevailing obstacles in timber construction such as low levels of automation (LoA) and transportation limitations, as well as the challenge of digital production in project-based design contexts by utilizing the concept of a modular, reconfigurable, transportable, and extendable fabrication platform supported by Human-Robot Collaboration (HRC) and custom Human-Machine Interfaces (HMIs). This project (RP 4-2) aims to expand the semi-autonomous cyber-physical prefabrication platform developed in phase one (RP 4-1) regarding the three key aspects of workpiece logistics, human-machine collaboration, and, ultimately, higher level cyber-physical fabrication and construction integration. The goal is to extend the platform's fabrication-design space for co-design, as well as to increase its flexibility and capacity. In the first phase, the focus of phase one was on developing flexibly arrangeable robotic fabrication modules, incorporating augmented reality supported human craft, and their evaluation in a practical use case. In RP 4-2, this setup will now be extended to connect multiple fabrication modules and potentially other systems through flexible transport modules in the form of an autonomous mobile robot (AMR) that connects the fabrication modules. This integrated workpiece handling is an important constituent for a project-based fabrication design space extension for the prefabrication of multi-story timber-building systems. It can be configured to work autonomously, in pre-existing fabrication setups off- and onsite, and will connect various fabrication modules in RP 4, RP 8, RP 16, and RP 26-1 among others. RP 4-2 further aims to intensify human-robot collaboration in the prefabrication from one robotic system and one human to multi-unit collaboration. The new challenge will be to lower the entry-level for fabrication control of human craft using Augmented Reality (AR) technology in such more complex setups. To that end, investigating the use of multimodal interaction will extend human skill sets. Distinct models of these autonomous and collaborative skills will extend the capacities of the Cyber-physical prefabrication platform developed in RP 4-1. Multi-level feedback throughout the design and fabrication solution space aims to establish a continuous feedback loop connecting the initial design phase down to online adaptation of the fabrication process. The new developments will be tested with the prefabrication of the building system developed in RP 3-1 and RP 3-2. In this way, RP 4-2 also aims to lay the foundation for a fully integrated cyber-physical prefabrication and construction process. 

 

PRINCIPAL INVESTIGATORS

Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr.-Ing. Alexander Verl
Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW), University of Stuttgart

PARTICIPATING RESEARCHER

Prof. Dr. Michael Sedlmair
Visualization Research Center (VISUS), University of Stuttgart

TEAM

Dr.-Ing. Armin Lechler (ISW)
Dr. Felix Amtsberg (ICD)
Tim Stark (ICD)
Benjamin Kaiser (ISW)
Aimée Sousa Calepso (VISUS)
Hans-Jakob Wagner (ICD)
Xiliu Yang (ICD)

 

PEER-REVIEWED PUBLICATIONS

  1. 2024

    1. Skoury, L., Treml, S., Opgenorth, N., Amtsberg, F., Wagner, H. J., Menges, A., & Wortmann, T. (2024). Towards data-informed co-design in digital fabrication. Automation in Construction, 158, 105229. https://doi.org/10.1016/j.autcon.2023.105229
    2. Opgenorth, N., Cheng, T., Lauer, P. R. A., Stark, T., Tahouni, Y., Treml, S., Göbel, M., Kiesewetter, L., Schlopschnat, C., Zorn, M. B., Yang, X., Amtsberg, F., Wagner, H. J., Wood, D., Sawodny, O., Wortmann, T., & Menges, A. (2024). Multi-scalar computational fabrication and construction of bio-based building envelopes – the livMatS biomimetic shell. Fabricate 2024: Creating Resourceful Futures, 22–31. https://doi.org/10.2307/jj.11374766.7
  2. 2023

    1. Öney, S., Pathmanathan, N., Becher, M., Sedlmair, M., Weiskopf, D., & Kurzhals, K. (2023). Visual Gaze Labeling for Augmented Reality Studies. Computer Graphics Forum, 42(3), Article 3. https://doi.org/10.1111/cgf.14837
    2. Yang, X., Sousa Calepso, A., Amtsberg, F., Menges, A., & Sedlmair, M. (2023). Usability Evaluation of an Augmented Reality System for Collaborative Fabrication between Multiple Humans and Industrial Robots. Proceedings of the 2023 ACM Symposium on Spatial User Interaction, 1–10. https://doi.org/10.1145/3607822.3614528
    3. Wortmeier, A.-K., Calepso, A. S., Kropp, C., Sedlmair, M., & Weiskopf, D. (2023). Configuring augmented reality users: analysing YouTube commercials to understand industry expectations. Behaviour & Information Technology, 0(0), Article 0. https://doi.org/10.1080/0144929X.2022.2163693
    4. Sherkat, S., Skoury, L., Wortmann, A., & Wortmann, T. (2023). Artificial Intelligence Automated Task Planning for Fabrication. In K. Dörfler, J. Knippers, A. Menges, S. Parascho, H. Pottmann, & T. Wortmann (Eds.), Advances in Architectural Geometry 2023 (pp. 249--260). De Gruyter. https://doi.org/doi:10.1515/9783111162683-019
    5. Pathmanathan, N., Öney, S., Becher, M., Sedlmair, M., Weiskopf, D., & Kurzhals, K. (2023). Been There, Seen That: Visualization of Movement and 3D Eye Tracking Data from Real-World Environments. Computer Graphics Forum, 42(3), Article 3. https://doi.org/10.1111/cgf.14838
    6. Kaiser, B., & Verl, A. (2023). Co-Design of Structural Timber Components Through Automated Model Generation for Manufacturing Simulation of Reconfigurable Manufacturing Systems. 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. https://doi.org/10.1109/M2VIP58386.2023.10413396
    7. Calepso, A. S., Fleck, P., Schmalstieg, D., & Sedlmair, M. (2023, October 9). Exploring Augmented Reality for Situated Analytics with Many Movable Physical Referents. https://doi.org/10.1145/3611659.3615700
    8. Bossecker, E., Calepso, A. S., Kaiser, B., Verl, A., & Sedlmair, M. (2023). A Virtual Reality Simulator for Timber Fabrication Tasks Using Industrial Robotic Arms. Proceedings of Mensch Und Computer 2023, 568–570. https://doi.org/10.1145/3603555.3609316
    9. Amtsberg, F., Yang, X., Skoury, L., Sousa Calepso, A., Sedlmair, M., Wortmann, T., & Menges, A. (2023). Multi-Actor Fabrication for Digital Timber Construction. ECAADe Proceedings. https://doi.org/10.52842/conf.ecaade.2023.1.417
  3. 2022

    1. Yang, X., Amtsberg, F., Skoury, L., Wagner, H. J., & Menges, A. (2022). Vizor, Facilitating Cyber-physical Workflows in Prefabrication through Augmented Reality. CAADRIA Proceedings. https://doi.org/10.52842/conf.caadria.2022.2.141
    2. Wolf, M., Kaiser, B., Hügle, S., Verl, A., & Middendorf, P. (2022). Data Model for Adaptive Robotic Construction in Architecture. Procedia CIRP, 107, 1035–1040. https://doi.org/10.1016/j.procir.2022.05.104
    3. Sousa Calepso, A., Hube, N., Berenguel Senn, N., Brandt, V., & Sedlmair, M. (2022). cARdLearner: Using expressive Virtual Agents when learning vocabulary in Augmented Reality. ACM.
    4. Skoury, L., Amtsberg, F., Yang, X., Wagner, H. J., Menges, A., & Wortmann, T. (2022). A Framework for Managing Data in Multi-actor Fabrication Processes. In C. Gengnagel, O. Baverel, G. Betti, M. Popescu, M. R. Thomsen, & J. Wurm (Eds.), Towards Radical Regeneration (pp. 601–615). Springer International Publishing. https://doi.org/10.1007/978-3-031-13249-0_47
    5. Kaiser, B., Wolf, M., & Verl, A. (2022). Modular Control Architecture for Reconfigurable Fabrication Systems for Prefabrication in Construction. ISR Europe 2022; 54th International Symposium on Robotics, 1–7.
    6. Fleck, P., Sousa Calepso, A., Hubenschmid, S., Sedlmair, M., & Schmalstieg, D. (2022). RagRug: A Toolkit for Situated Analytics. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2022.3157058
    7. Chai, H., Guo, Z., Wagner, H. J., Stark, T., Menges, A., & Yuan, P. F. (2022). In-Situ Robotic Fabrication of Spatial Glulam Structures. Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, 2, 41--50. https://doi.org/10.52842/conf.caadria.2022.2.041
    8. Achberger, A., Heyen, F., Vidackovic, K., & Sedlmair, M. (2022). Touching data with PropellerHand. Journal of Visualization. https://doi.org/10.1007/s12650-022-00859-2
    9. Achberger, A., Arulrajah, P., Sedlmair, M., & Vidackovic, K. (2022). STROE: An Ungrounded String-Based Weight Simulation Device. IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 112–120. https://doi.org/10.1109/VR51125.2022.00029
    10. Abdelaal, M., Amtsberg, F., Becher, M., Estrada, R. D., Kannenberg, F., Calepso, A. S., Wagner, H. J., Reina, G., Sedlmair, M., Menges, A., & Weiskopf, D. (2022). Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 42(2), Article 2. https://doi.org/10.1109/MCG.2022.3149837
  4. 2021

    1. Qi, Y., Zhong, R., Kaiser, B., Tahouni, Y., Wagner, H. J., Verl, A., & Menges, A. (2021). Augmented Accuracy: A Human-Machine Integrated Adaptive Fabrication Workflow for Bamboo. In V. Stojakovic & B. Tepavcevic (Eds.), Proceedings of the 39th eCAADe Conference (Vol. 1, pp. 345--354). Cumincad. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_169
    2. Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Skoury, L., Knippers, J., & Menges, A. (2021). Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey. In V. Stojakovic & B. Tepavcevic (Eds.), Proceedings of the 39th eCAADe Conference (Vol. 1, pp. 303--312). Cumincad. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_284
    3. Ellwein, C., Reichle, A., Herschel, M., & Verl, A. (2021). Integrative data processing for cyber-physical off-site and on-site construction promoting co-design. Procedia CIRP, 100, 451–456. https://doi.org/10.1016/j.procir.2021.05.103
    4. Amtsberg, F., Yang, X., Skoury, L., Wagner, H.-J., & Menges, A. (2021). iHRC: An AR-based interface for intuitive, interactive and coordinated task sharing between humans and robots in building construction. In C. Feng, T. Linner, I. Brilakis, D. Castro, P.-H. Chen, Y. Cho, J. Du, S. Ergan, B. Garcia de Soto, J. Gašparík, F. Habbal, A. Hammad, K. Iturralde, T. Bock, S. Kwon, Z. Lafhaj, N. Li, C.-J. Liang, B. Mantha, … Z. Zhu (Eds.), Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC) (pp. 25–32). International Association for Automation and Robotics in Construction (IAARC). https://doi.org/10.22260/ISARC2021/0006
    5. Achberger, A., Heyen, F., Vidackovic, K., & Sedlmair, M. (2021). PropellerHand: A Hand-Mounted, Propeller-Based Force Feedback Device. International Symposium on Visual Information Communication and Interaction (VINCI), 4:1--4:8. https://doi.org/10.1145/3481549.3481563
    6. Achberger, A., Aust, F., Pohlandt, D., Vidackovic, K., & Sedlmair, M. (2021). STRIVE: String-Based Force Feedback for Automotive Engineering. ACM Symposium on User Interface Software and Technology (UIST), 841--853. https://doi.org/10.1145/3472749.3474790
  5. 2020

    1. Weiß, M., Angerbauer, K., Voit, A., Schwarzl, M., Sedlmair, M., & Mayer, S. (2020). Revisited: Comparison of Empirical Methods to Evaluate Visualizations Supporting Crafting and Assembly Purposes. IEEE Trans. Visualization and Computer Graphics (TVCG, Proc. InfoVis 2020).
    2. Wagner, H. J., Chai, H., Guo, Z., Menges, A., & Yuan, P. F. (2020). Towards an On-site Fabrication System for Bespoke , Unlimited and Monolithic Timber Slabs. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Las Vegas, NV, USA (Virtual) - Workshop on Construction and Architecture Robotics, 2020. https://doi.org/10.13140/RG.2.2.14098.68802
    3. Wagner, H. J., Alvarez, M., Kyjanek, O., Bhiri, Z., Buck, M., & Menges, A. (2020). Flexible and transportable robotic timber construction platform – TIM. Automation in Construction, 120, Article 120. https://doi.org/10.1016/j.autcon.2020.103400
    4. Wagner, H. J., Alvarez, M., Groenewolt, A., & Menges, A. (2020). Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion. Construction Robotics. https://doi.org/10.1007/s41693-020-00038-5
    5. Qi, Y., Zhong, R., Kaiser, B., Nguyen, L., Wagner, H. J., Verl, A., & Menges, A. (2020). Working with Uncertainties: An Adaptive Fabrication Workflow for Bamboo Structures. In P. F. Yuan, J. Yao, C. Yan, X. Wang, & N. Leach (Eds.), Proceedings of the 2020 DigitalFUTURES. Springer Nature Switzerland AG.
    6. Merino, L., Schwarzl, M., Kraus, M., Sedlmair, M., Schmalstieg, D., & Weiskopf, D. (2020). Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009 -- 2019). IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

OHTER PUBLICATIONS

  1. 2022

    1. Chai, H., Wagner, H. J., Guo, Z., Qi, Y., Menges, A., & Yuan, P. F. (2022). Computational design and on-site mobile robotic construction of an adaptive reinforcement beam network for cross-laminated timber slab panels. Automation in Construction, 142(August), Article August. https://doi.org/10.1016/j.autcon.2022.104536
    2. Wagner, H. J. (2022). Digitale Fabrikation: Was bringt uns die Zukunft? In 2. Internationaler Kongress Holzbau: Technik+Wirtschaft (HTW) (pp. 91--102). FORUM HOLZBAU.

DATA SETS

  1. 2022

    1. Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Supplemental Materials for: Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. DaRUS. https://doi.org/10.18419/DARUS-3100
    2. Wortmeier, A.-K., Calepso, A. S., Kropp, C., Sedlmair, M., & Weiskopf, D. (2022). Replication Data for BauHCI Video Analysis. DaRUS. https://doi.org/10.18419/darus-2117
  2. 2021

    1. Kaiser, B. (2021). Replication data for: Planning of Curvature-Optimal Smooth Paths for Industrial Robots Using Neural Networks. https://doi.org/10.18419/darus-2126

    

To the top of the page