Multi-Storey Wood Building System

Research Project 3 (RP 3)

COMPUTATIONAL DESIGN, ENGINEERING AND DEVELOPMENT OF DIGITALLY  FABRICATED MULTI-STOREY WOOD BUILDING SYSTEM

Current wood building systems are greatly dependent on rigid grids as ordering systems, which results in severe design limitations for open-plan, flexible spaces and bespoke architectural solutions. The main aim of this project is to address these architectural limitations through the development of a novel, genuinely digital wood building system, which enables the adoption of prefabricated timber construction in additional building typologies. This will integrate computational design, engineering, as well as building physics in tight relation with the respective fabrication strategies. The building system includes design and development of structural components as well as building services, insulation and cladding. Key characteristics of the building systems we strive for are grid-independency, biaxial spans and pointwise concentrated supports. This raises challenges for the structure, building physics and building services. Through the co-design of these aspects, together with the development of new joint systems, this research project will integrate and run hand-in-hand with novel concepts of cyber-physical on- and off-site production. In addition, it will consider developments of bio-based material systems adjustments and requirements of technical standards and legal frameworks and the reflection of novel design possibilities of IntCDC-based multi-storey timber buildings.

 

PRINCIPAL INVESTIGATORS

Prof. Achim Menges
ICD - Institute for Computational Design and Construction, University of Stuttgart
Prof. Dr.-Ing. Jan Knippers
ITKE - Institute for Building Structures and Structural Design, University of Stuttgart
Prof. Dr.-Ing. Philip Leistner
IABP - Institute for Acoustics and Building Physics, University of Stuttgart
Prof. Dr.-Ing. Harald Garrecht with Dr. Simon Aicher
MPA – Materials Testing Institute, University of Stuttgart

TEAM

Nikolas Früh (ITKE)
Anna Krtschil (ITKE)
Theresa Müller (IABP)
Luis Orozco (ICD)
Holger Röseler (IABP)
Tobias Schwinn (ICD)
Cristóbal Tapia Camú (MPA)
Hans-Jakob Wagner (ICD)

 

PEER-REVIEWED PUBLICATIONS

  1. 2021

    1. Wagner, H. J., Aicher, S., Balangé, L., Basalla, U., Schwieger, V., & Menges, A. (2021). Qualities of the Unique: Accuracy and Process-Control Management in Project-based Robotic Timber Construction. World Conference on Timber Engineering 2021 - WCTE 2021.
    2. Wagner, H. J., Garufi, D., Schwinn, T., Wood, D. M., & Menges, A. (2021). Three-Dimensional Fibre Placement in Wood for connections and reinforcements in timber structures. In S. A. Behnejad, G. A. R. Parke, & O. A. Samavati (Eds.), Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures. IASS.
    3. Tapia, C., Stimpfle, L., & Aicher, S. (2021). A scalable column-CLT-slab connection for open-plan high-rise timber buildings. Proceedings of WCTE 2021 - World Conference on Timber Engineering.
    4. Orozco, L., Krtschil, A., Wagner, H. J., Bechert, S., Amtsberg, F., Skoury, L., Knippers, J., & Menges, A. (2021). Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey. In V. Stojakovic & B. Tepavcevic (Eds.), Proceedings of the 39th eCAADe Conference (Vol. 1, pp. 303--312). Cumincad. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2021_284
    5. Müller, T., Flemming, D., Janowsky, I., Di Bari, R., Harder, N., & Leistner, P. (2021). Bauphysikalische und ökologische Potenziale von Gebäuden in Holzbauweise. Bauphysik, 43(3), 174–185. https://doi.org/10.1002/bapi.202100011
    6. Müller, T., Borschewski, D., Albrecht, S., Leistner, P., & Späh, M. (2021). The Dilemma of Balancing Design for Impact Sound with Environmental Performance in Wood Ceiling Systems—A Building Physics Perspective. Sustainability, 13(16), 8715. https://doi.org/10.3390/su13168715

OTHER PUBLICATIONS

  1. 2021

    1. Tapia Camú, C., & Claus, M. (2021). Experimental data for robotically manufactured plate-to-plate connection. DaRUS. https://doi.org/10.18419/darus-1344
  2. 2020

    1. Stimpfle, L. (2020). Skalierbarer Stützen-Decken-Anschluss mit eingeklebten Furnierschichtholz-Verstärkungen für mehrgeschossige Holzbauten --- Detaillierung, Berechnung, Versuche.
    2. Tapia, C., Stimpfle, L., & Aicher, S. (2020). A new column-to-slab connection for multi-storey timber buildings. Otto Graf Journal, 19, 297--317.

  

To the top of the page