Computational Design for Fibre Composite Building Systems

Research Project 12-1 (RP 12-1)


Coreless winding of lightweight fibre composite systems enables highly differentiated placement of high-performance, load-bearing materials and creates new solution spaces for design and construction of lightweight fibrous structures.

In early design phases of such large-scale, coreless-wound fibre composite building systems, considerable effort is required to develop project-specific solutions due to the high complexity of interdependent parameters of design, construction and manufacturing demands. In addition, the need for physical prototypes and digital-physical iteration loops increases the workload and re-duces the depth of exploration. While multiple project-based computational solutions and tools have been developed, those were case-specific and used many assumptions to simplify the implementation and ensure computational tractability. Therefore, they cannot be directly transferred to general cases where the typology of the fibre network is not fully known in advance, or where the topology of fibre-fibre contact points cannot be predicted in advance. This reduces the design space to relatively simple typologies limited to the designer’s intuition and experience.

In order to process manifold interrelations within a multidisciplinary design and construction process, we aim to develop a framework of general design methods to make large fibre-based systems conceivable and extend the design space beyond structures based on experience and intuition, unlocking the full potential of coreless fibre winding. This framework should be aided by visual analytics tools, machine learning and optimization.



Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr. rer. nat. Daniel Weiskopf
Visualization Research Center (VISUS), University of Stuttgart
Prof. Dr. rer. nat. Marc Toussaint
Machine Learning and Robotics Lab (IPVS-MLR), University of Stuttgart


Moataz Abdelaal (VIS)
Rebeca Duque (ICD)
Valentin Noah Hartmann (IPVS-MLR)
Fabian Kannenberg (ICD)
Tobias Schwinn (ICD)
Nicolai Grünvogel (IBB)


  1. 2022

    1. Menges, A., Kannenberg, F., & Zechmeister, C. (2022). Computational co-design of fibrous architecture. Architectural Intelligence, 1(1), 6--.
    2. Menges, A., & Wortmann, T. (2022). Synthesising Artificial Intelligence and Physical Performance. Architectural Design, 92(3), 94–99.
    3. Gil Pérez, M., Zechmeister, C., Menges, A., & Knippers, J. (2022). Coreless filament-wound structures: toward performative long-span and sustainable building systems. In S. Xue, J. Wu, & G. Sun (Eds.), Proceedings of IASS Annual Symposia 2022: Innovation, Sustainability and Legacy (Vol. 2022, pp. 3366–3376). International Association for Shell and Spatial Structures (IASS).
    4. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre-polymer composite structures. Journal of Computational Design and Engineering, 9(2), 310--329.
    5. Abdelaal, M., Amtsberg, F., Becher, M., Estrada, R. D., Kannenberg, F., Calepso, A. S., Wagner, H. J., Reina, G., Sedlmair, M., Menges, A., & Weiskopf, D. (2022). Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 42(2), 10–20.
    6. Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. IEEE Transactions on Visualization and Computer Graphics, 1–11.
  2. 2021

    1. Hägele, D., Abdelaal, M., Oguz, O. S., Toussaint, M., & Weiskopf, D. (2021). Visual analytics for nonlinear programming in robot motion planning. Journal of Visualization.
    2. Duque Estrada, R., Kannenberg, F., Wagner, H. J., Yablonina, M., & Menges, A. (2021). Integrative Design Methods for Spatial Winding. Advances in Architectural Geometry 2020, 286–305.
  3. 2020

    1. Hägele, D., Abdelaal, M., Oguz, O. S., Toussaint, M., & Weiskopf, D. (2020). Visualization of Nonlinear Programming for Robot Motion Planning. Proceedings of the 13th International Symposium on Visual Information Communication and Interaction.
    2. Duque Estrada, R., Kannenberg, F., Wagner, H. J., Yablonina, M., & Menges, A. (2020). Spatial Winding: Cooperative Heterogeneous Multi-Robot System for Fibrous Structures. Construction Robotics, 4(3–4), 205–215.
    3. Abdelaal, M., Lhuillier, A., Hlawatsch, M., & Weiskopf, D. (2020). Time-Aligned Edge Plots for Dynamic Graph Visualization. 2020 24th International Conference Information Visualisation (IV).




      To the top of the page