Computational Co-Design Framework for Fibre Composite Building Systems

Research Project 12-2 (RP 12-2)

Weiße Schrift

COMPUTATIONAL CO-DESIGN FRAMEWORK FOR FIBRE COMPOSITE BUILDING SYSTEMS

Coreless filament winding (CFW) of lightweight fibre composite systems enables highly differentiated placement of high-performance, load-bearing materials and creates new solution spaces for design and construction of lightweight fibrous structures. In early design phases of such large-scale coreless-wound fibre composite building systems, considerable effort is required to develop project-specific solutions due to the high complexity of interdependent parameters of design, construction and manufacturing demands. As a genuinely digital building system, CFW is reliant on a high level of integration. In order to process manifold interrelations within a multidisciplinary design and construction process, the project will develop a computational framework of general design methods to make large fibre-based systems conceivable and extend the design space beyond structures based on experience and intuition, unlocking the full potential of coreless filament winding. It aims to make the resulting building systems even more efficient and sustainable through a higher level of design integration as well as predictability. By identifying relevant parameters for the structural behaviour of the components across domains, it aims to decrease the necessary safety factors for designing these structures, thus ultimately the amount of material needed.

 

PRINCIPAL INVESTIGATORS

Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr. rer. nat. Daniel Weiskopf
Visualization Research Center (VISUS), University of Stuttgart
Prof. Dr.-Ing. Jan Knippers
ITKE - Institute for Building Structures and Structural Design, University of Stuttgart
Prof. Dr.-Ing. Götz T. Gresser
Institute for Textile and Fiber Technologies (ITFT), University of Stuttgart
Prof. Dr.-Ing. habil. Manfred Bischoff
Institute for Structural Mechanics (IBB), University of Stuttgart

TEAM

Moataz Abdelaal (VIS)
Yanan Guo (ITKE)
Marta Gil Pérez (ITKE)
David Forster (IBB)
Pascal Mindermann (ITFT)
Fabian Kannenberg (ICD)
Nicolai Grünvogel (IBB)
Christoph Zechmeister (ICD)

 

PEER-REVIEWED PUBLICATIONS

  1. 2022

    1. Abdelaal, M., Amtsberg, F., Becher, M., Estrada, R. D., Kannenberg, F., Calepso, A. S., Wagner, H. J., Reina, G., Sedlmair, M., Menges, A., & Weiskopf, D. (2022). Visualization for Architecture, Engineering, and Construction: Shaping the Future of Our Built World. IEEE Computer Graphics and Applications, 42(2), 10–20. https://doi.org/10.1109/MCG.2022.3149837
    2. Abdelaal, M., Schiele, N. D., Angerbauer, K., Kurzhals, K., Sedlmair, M., & Weiskopf, D. (2022). Comparative Evaluation of Bipartite, Node-Link, and Matrix-Based Network Representations. IEEE Transactions on Visualization and Computer Graphics, 1–11. https://doi.org/10.1109/TVCG.2022.3209427
    3. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre-polymer composite structures. Journal of Computational Design and Engineering, 9(2), 310--329. https://doi.org/10.1093/jcde/qwab081
    4. Gil Pérez, M., Zechmeister, C., Menges, A., & Knippers, J. (2022). Coreless filament-wound structures: toward performative long-span and sustainable building systems. In S. Xue, J. Wu, & G. Sun (Eds.), Proceedings of IASS Annual Symposia 2022: Innovation, Sustainability and Legacy (Vol. 2022, pp. 3366–3376). International Association for Shell and Spatial Structures (IASS).
    5. Menges, A., Kannenberg, F., & Zechmeister, C. (2022). Computational co-design of fibrous architecture. Architectural Intelligence, 1(1), 6--. https://doi.org/10.1007/s44223-022-00004-x
    6. Menges, A., & Wortmann, T. (2022). Synthesising Artificial Intelligence and Physical Performance. Architectural Design, 92(3), 94–99. https://doi.org/10.1002/ad.2819
    7. Richer, G., Pister, A., Abdelaal, M., Fekete, J.-D., Sedlmair, M., & Weiskopf, D. (2022). Scalability in Visualization. IEEE Transactions on Visualization and Computer Graphics, 1–15. https://doi.org/10.1109/TVCG.2022.3231230
    8. Stieler, D., Schwinn, T., Leder, S., Maierhofer, M., Kannenberg, F., & Menges, A. (2022). Agent-based modeling and simulation in architecture. Automation in Construction, 141, 104426. https://doi.org/10.1016/j.autcon.2022.104426
  2. 2021

    1. Duque Estrada, R., Kannenberg, F., Wagner, H. J., Yablonina, M., & Menges, A. (2021). Integrative Design Methods for Spatial Winding. Advances in Architectural Geometry 2020, 286–305. https://thinkshell.fr/wp-content/uploads/2019/10/AAG2020_15_Duque.pdf
    2. Hägele, D., Abdelaal, M., Oguz, O. S., Toussaint, M., & Weiskopf, D. (2021). Visual analytics for nonlinear programming in robot motion planning. Journal of Visualization. https://doi.org/10.1007/s12650-021-00786-8
  3. 2020

    1. Abdelaal, M., Lhuillier, A., Hlawatsch, M., & Weiskopf, D. (2020). Time-Aligned Edge Plots for Dynamic Graph Visualization. 2020 24th International Conference Information Visualisation (IV). https://doi.org/10.1109/IV51561.2020.00048
    2. Duque Estrada, R., Kannenberg, F., Wagner, H. J., Yablonina, M., & Menges, A. (2020). Spatial Winding: Cooperative Heterogeneous Multi-Robot System for Fibrous Structures. Construction Robotics, 4(3–4), 205–215. https://doi.org/10.1007/s41693-020-00036-7
    3. Hägele, D., Abdelaal, M., Oguz, O. S., Toussaint, M., & Weiskopf, D. (2020). Visualization of Nonlinear Programming for Robot Motion Planning. Proceedings of the 13th International Symposium on Visual Information Communication and Interaction. https://doi.org/10.1145/3430036.3430050

OTHER PUBLICATIONS

    DATA SETS

        

      To the top of the page