Long-span Fibre Composite Structures

Research Project 11-1 (RP 11-1)


The project aim is to develop coreless wound fibre composite building systems with improved overall performance and reliability. The four main challenges of a coreless wound fibre-reinforced polymer (FRP) building system are: joint design, understanding the structural system, environmental impact and the integration into an architectural concept.

Higher stresses can accumulate at the joints, which makes the connections one of the key challenges in the structural system. They must be addressed in order to improve the overall performance and efficiency of the system. In the structural design phase of coreless wound filament structures (CFW) significant abstractions are made that can lead to a more conservative understanding of the system. The only way to improve the overall understanding of the structural system is to do real world measurements. To achieve this over the lifetime of a structure, a structural health monitoring (SHM) system will be included in the FRP components. The environmental footprint of the material is another challenge. This project will address possible, sustainable material alternatives to the carbon-/glass fibre epoxy material systems.

For a holistic assessment of these challenges, they need to be architecturally integrated within the overall building system. Therefore, this project aims to develop integrated joining, sensing and material strategies.



Prof. Dr.-Ing. Jan Knippers
Institute of Building Structures and Structural Design (ITKE), University of Stuttgart
Prof. Achim Menges
Institute for Computational Design and Construction (ICD), University of Stuttgart
Prof. Dr.-Ing. Götz T. Gresser
Institute for Textile and Fiber Technologies (ITFT), University of Stuttgart


Niccolò  Dambrosio (ICD)
Marta Gil Pérez (ITKE)
Pascal Mindermann (ITFT)
Tzu-Ying Chen (ITKE)


  1. 2022

    1. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre-polymer composite structures. Journal of Computational Design and Engineering, 9(2), 310--329. https://doi.org/10.1093/jcde/qwab081
    2. Gil Pérez, M., Früh, N., La Magna, R., & Knippers, J. (2022). Integrative structural design of a timber-fibre hybrid building system fabricated through coreless filament winding: Maison Fibre. Journal of Building Engineering, 49, 104114. https://doi.org/10.1016/j.jobe.2022.104114
    3. Gil Pérez, M., Guo, Y., & Knippers, J. (2022). Integrative material and structural design methods for natural fibres filament-wound composite structures: The LivMatS pavilion. Materials & Design, 217, 110624. https://doi.org/10.1016/j.matdes.2022.110624
    4. Gil Pérez, M., Zechmeister, C., Menges, A., & Knippers, J. (2022). Coreless filament-wound structures: toward performative long-span and sustainable building systems. In S. Xue, J. Wu, & G. Sun (Eds.), Proceedings of IASS Annual Symposia 2022: Innovation, Sustainability and Legacy (Vol. 2022, pp. 3366–3376). International Association for Shell and Spatial Structures (IASS).
    5. Guo, Y., Serhat, G., Gil Pérez, M., & Knippers, J. (2022). Maximizing buckling load of elliptical composite cylinders using lamination parameters. Engineering Structures, 262, 114342. https://doi.org/10.1016/j.engstruct.2022.114342
    6. Guo, Y., Gil Pérez, M., Serhat, G., & Knippers, J. (2022). A design methodology for fiber layup optimization of filament wound structural components. Structures, 38, 1125--1136. https://doi.org/10.1016/j.istruc.2022.02.048
    7. Mindermann, P., Gil Pérez, M., Kamimura, N., Knippers, J., & Gresser, G. T. (2022). Implementation of fiber-optical sensors into coreless filament-wound composite structures. Composite Structures, 290, 115558. https://doi.org/10.1016/j.compstruct.2022.115558
    8. Mindermann, P., Pérez, M. G., Knippers, J., & Gresser, G. T. (2022). Investigation of the Fabrication Suitability, Structural Performance, and Sustainability of Natural Fibers in Coreless Filament Winding. Materials, 15(9), 3260. https://doi.org/10.3390/ma15093260
  2. 2021

    1. Bodea, S., Mindermann, P., Gresser, G. T., & Menges, A. (2021). Additive Manufacturing of Large Coreless Filament Wound Composite Elements for Building Construction. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2020.0346
    2. Dambrosio, N., Zechmeister, N., Duque Estrada, R., Kannenberg, F., Gil Pérez, M., Schlopschnat, C., Rinderspacher, K., Knippers, J., & Menges, A. (2021). Design and development of an FRP-Timber hybrid building system for multi-story applications in architecture: Maison Fibre. In B. Farahi, B. Bogosian, J. Scott, J. L. García del Castillo y López, K. Dörfler, J. A. Grant, S. Parascho, & V. A. A. Noel (Eds.), Realignments: Toward Critical Computation - ACADIA 2021.
    3. Gil Pérez, M., Rongen, B., Koslowski, V., & Knippers, J. (2021). Structural design assisted by testing for modular coreless filament-wound composites: The BUGA Fibre Pavilion. Construction and Building Materials, 301, 124303. https://doi.org/10.1016/j.conbuildmat.2021.124303
    4. Mindermann, P., Rongen, B., Gubetini, D., Knippers, J., & Gresser, G. T. (2021). Material Monitoring of a Composite Dome Pavilion Made by Robotic Coreless Filament Winding. Materials, 14(19), 5509. https://doi.org/10.3390/ma14195509
    5. Mindermann, P., Bodea, S., Menges, A., & Gresser, G. T. (2021). Development of an Impregnation End-Effector with Fiber Tension Monitoring for Robotic Coreless Filament Winding. Processes, 9(5), 806. https://doi.org/10.3390/pr905080
  3. 2020

    1. Bodea, S., Dambrosio, N., Zechmeister, C., Gil-Perez, M., Koslowski, V., Rongen, B., Doerstelmann, M., Kyjanek, O., Knippers, J., & Menges, A. (2020). BUGA Fibre Pavilion: Towards Robotically-Fabricated Composite Building Structures. Fabricate 2020: Making Resilient Architecture, 234--243.
    2. Gil Pérez, M., Rongen, B., Koslowski, V., & Knippers, J. (2020). Structural design, optimization and detailing of the BUGA fibre pavilion. International Journal of Space Structures, 0(0), Article 0. https://doi.org/10.1177/0956059920961778
  4. 2019

    1. Dambrosio, N., Zechmeister, C., Bodea, S., Koslowski, V., Gil Pérez, M., Rongen, B., Knippers, J., & Menges, A. (2019). Buga Fibre Pavilion: Towards an architectural application of novel  fiber composite building systems. In K. Bieg, D. Briscoe, & C. Odom (Eds.), Acadia 2019: Ubiquity and Autonomy, proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, Texas (pp. 140--149). Acadia Publishing Company.
    2. Gil Pérez, M., Dambrosio, N., Rongen, B., Menges, A., & Knippers, J. (2019). Structural optimization of coreless filament wound components connection system through orientation of anchor points in the winding frames. In C. Lazaro, K.-U. Bletzinger, & E. Onate (Eds.), Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 Form and Force (Vol. 2019, pp. 1381--1388). International Association for Shell and Spatial Structures (IASS).
    3. Zechmeister, C., Bodea, S., Dambrosio, N., & Menges, A. (2019). Design for Long-Span Core-Less Wound, Structural Composite Building Elements. Impact: Design With All Senses Proceedings of the Design Modelling Symposium 2019, 401--415. https://doi.org/10.1007/978-3-030-29829-6 32


  1. 2021

    1. Iori, T. (2021). La Maison Fibre o del robot Aracne che fila la casa del futuro. Rassegna di Architettura e Urbanistica, 164, 90–96.
    2. Speight, V. (2021). La fibre robotique. Hors Site Magazine.



    To the top of the page