Holistic Quality Model for Extension of Existing Buildings

Research Project 18-2 (RP 18-2)

Weiße Schrift

HOLISTIC QUALITY MODEL FOR EXTENSION OF EXISTING BUILDINGS: SOCIAL, ENVIRONMENTAL, TECHNICAL AND ECONOMIC INTEGRATION

We will extend the Holistic Quality Model (HQM) with its social, environmental and technical characteristics to include economic characteristics and the respective interrelations. Thus, all aspects of the sustainability triangle are considered within the HQM. This offers the possibility to interrelate e.g. economic and environmental aspects by providing the same result in terms of environmental quality at lower cost or in shorter time.IntCDC_RP18_2 Grafik

In IntCDC, various novel building systems (e.g. for fibre and bio-composites) are developed that require interdisciplinary as well as disciplinary research on quality modelling and assessment when adopting the HQM.

Holistic quality assessment is a challenge not only for newly planned buildings but also for the existing building stock. Concerning the latter, we will consider and acquire the starting/boundary conditions and establish new quality criteria for the different quality parameters in order to inform and support decision-making already at the earliest stage when the decision about extension/conversion vs. demolishing and building anew within the urban context is at stake. The HQM and the respective quality assessment will provide a methodical contribution for supporting these co-decisions.

 
PRINCIPAL INVESTIGATORS

Prof. Dr. phil. Cordula Kropp
Institute for Social Sciences (SOWI), University of Stuttgart
Prof. Dr.-Ing. Philip Leistner
Institute for Acoustics and Building Physics (IABP), University of Stuttgart
Prof. Dr.-Ing. habil. Volker Schwieger
Institute of Engineering Geodesy (IIGS), University of Stuttgart
Prof. Dr.-Ing. Hans Christian Jünger
Institute of Construction Management (IBL), University of Stuttgart

TEAM

Dr.-Ing. Li Zhang (IIGS)
apl. Prof. Dr. Kathrin Braun (SOWI)
Laura Balangé (IIGS)
Roberta Di Bari (LBP)
Sebastian Michael Bornschlegl (SOWI) 
Matthias Fischer (LBP)
Rafael Horn (LBP)
Philip Haag (IBL)
Deniz Frost (SOWI)
Darius Heller (IBL)

 

 

PEER-REVIEWED PUBLICATIONS

  1. 2023

    1. Balangé, L., Sprügel, N., & Schwieger, V. (2023). Segmentierung und Modellierung von Fasern für die Qualitätssicherung von Faserverbundsystembauteilen mittels terrestrischem Laserscanning. In A. Wieser (Ed.), Beiträge zum 20. Internationalen Ingenieurvermessungskurs Zürich 2023. Wichmann VDE Verlag, Berlin. https://www.vde-verlag.de/buecher/537734/ingenieurvermessung-23.html
  2. 2022

    1. Kerekes, G., Petrš, J., Schwieger, V., & Dahy, H. (2022). Geometric quality control for bio-based building elements: Study case segmented experimental shell. Journal of Applied Geodesy. https://doi.org/doi:10.1515/jag-2020-0035
    2. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2022). Computational co-design framework for coreless wound fibre-polymer composite structures. Journal of Computational Design and Engineering, 9(2), Article 2. https://doi.org/10.1093/jcde/qwab081
    3. Frost, D., Gericke, O., Di Bari, R., Balangé, L., Zhang, L., Blagojevic, B., Nigl, D., Haag, P., Blandini, L., Jünger, H. C., Kropp, C., Leistner, P., Sawodny, O., Schwieger, V., & Sobek, W. (2022). Holistic Quality Model and Assessment—Supporting Decision-Making towards Sustainable Construction Using the Design and Production of Graded Concrete Components as an Example. Sustainability, 14(18), Article 18. https://doi.org/10.3390/su141811269
    4. Frost, D., Braun, K., & Kropp, C. (2022). Between sustainability commitments and anticipated market requirements: Exploring the resilience of the techno-economic innovation paradigm in the midstream of construction research. NOvation, II. http://www.novation.inrs.ca/index.php/novation/article/view/42
    5. Balangé, L., Harmening, C., Duque Estrada, R., Menges, A., Neuner, H., & Schwieger, V. (2022). Monitoring the production process of lightweight fibrous structures using terrestrial laser scanning. 5th Joint International Symposium on Deformation Monitoring, Valencia, Spain. https://doi.org/10.4995/JISDM2022.2022.13830
  3. 2021

    1. Yang, Y., Balangé, L., Gericke, O., Schmeer, D., Zhang, L., Sobek, W., & Schwieger, V. (2021). Monitoring of the Production Process of Graded Concrete Component Using Terrestrial Laser Scanning. Remote Sensing, 13(9), Article 9. https://doi.org/10.3390/rs13091622
    2. Wagner, H.-J., Aicher, S., Balangé, L., Basalla, U., Schwieger, V., & Menges, A. (2021). Qualities of the Unique: Accuracy and Process-Control Management in Project-based Robotic Timber Construction. World Conference on Timber Engineering (WCTE 2021), Santiago, Chile, 9.-12. August.
    3. Wagner, H. J., Aicher, S., Balangé, L., Basalla, U., Schwieger, V., & Menges, A. (2021). Qualities of the Unique: Accuracy and Process-Control Management in Project-based Robotic Timber Construction. World Conference on Timber Engineering 2021 - WCTE 2021.
    4. Müller, T., Flemming, D., Janowsky, I., Di Bari, R., Harder, N., & Leistner, P. (2021). Bauphysikalische und ökologische Potenziale von Gebäuden in Holzbauweise. Bauphysik, 43(3), Article 3. https://doi.org/10.1002/bapi.202100011
    5. Kropp, C. (2021). Embedded Humanism: Chancen und Risiken von STIR für eine transformative TA. In R. Lindner, M. Decker, E. Ehrensperger, N. B. Heyen, S. Lingner, C. Scherz, & M. Sotoudeh (Eds.), Gesellschaftliche Transformation: Gegenstand oder Aufgabe der Technikfolgenabschätzung. (Vol. 22, pp. 119–131). Nomos.
    6. Balangé, L., Zhang, L., & Schwieger, V. (2021). First Step Towards the Technical Quality Concept for Integrative Computational Design and Construction. In A. Kopáčik, P. Kyrinovič, J. Erdélyi, R. Paar, & A. Marendić (Eds.), Contributions to International Conferences on Engineering Surveying (pp. 118–127). Springer, Cham. https://doi.org/10.1007/978-3-030-51953-7_10
  4. 2020

    1. Zhang, L., Balangé, L., Braun, K., Di Bari, R., Horn, R., Hos, D., Kropp, C., Leistner, P., & Schwieger, V. (2020). Quality as Driver for Sustainable Construction - Holistic Quality Model and Assessment. Sustainability, 2020, 12(19)(7847), Article 7847. https://doi.org/10.3390/su12197847
    2. Horn, R., Ebertshäuser, S., Di Bari, R., Jorgji, O., Traunspurger, R., & Both, P. von. (2020). BIM2LCA Approach: An Industry Foundation Classes (IFC)-Based Interface to Integrate Life Cycle Assessment in Integral Planning. Sustainability, 12(16), Article 16. https://doi.org/10.3390/su12166558
    3. Di Bari, R., Belleri, A., Marini, A., Horn, R., & Gantner, J. (2020). Probabilistic Life-Cycle Assessment of Service Life Extension on Renovated Buildings under Seismic Hazard. Buildings, 10(3), Article 3. https://doi.org/10.3390/buildings10030048
    4. Balangé, L., Zhang, L., & Schwieger, V. (2020). First Step Towards the Technical Quality Concept for Integrative Computational Design and Construction. Contributions to International Conferences on Engineering Surveying, 118–127. https://doi.org/10.1007/978-3-030-51953-7_10
  5. 2019

    1. Schwieger, V., Menges, A., Zhang, L., & Schwinn, T. (2019). Engineering Geodesy for Integrative Computational Design and Construction. Zeitschrift Für Geodäsie, Geoinformation Und Landmanagement (ZfV), 144(4), Article 4. https://doi.org/10.12902/zfv-0272-2019
    2. Jorgji, O., Di Bari, R., Katrin, L., Gantner, J., & Horn, R. (2019). Analysing the impact of retrofitting and new construction through probabilistic life cycle assessment. A method applied to the environmental-economic payoff value of an intervention case in the Albanian building sector. IOP Conference Series: Earth and Environmental Science, 323(012184), Article 012184. https://doi.org/10.1088/1755-1315/323/1/012184
    3. Harder, N., Schlegl, F., Flemming, D., Di Bari, R., Albrecht, S., Leistner, P., & Park, S. (2019). Bauphysikalische und ökologische Bewertung adaptiver Fassadenkonstruktionen auf Raumebene. Bauphysik, 41(6), Article 6. https://doi.org/10.1002/bapi.201900023
    4. Di Bari, R., Jorgji, O., Horn, R., Gantner, J., & Ebertshäuser, S. (2019). Step-by-step implementation of BIM-LCA: A case study analysis associating defined construction phases with their respective environmental impacts. IOP Conference Series: Earth and Environmental Science, 323(012105), Article 012105. https://doi.org/10.1088/1755-1315/323/1/012105

OTHER PUBLICATIONS

  1. 2022

    1. Balangé, L., Zhang, L., & Schwieger, V. (2022). Qualitätssicherung im Rahmen des Exzellenzclusters IntCDC. 208. DVW-Seminar: Qualitätssicherung Geodätischer Mess- Und Auswerteverfahren, Berlin 2022, 2.-3.Juni.
    2. Miehling, R. (2022). Entwicklung und Evaluierung eines Algorithmus zur Liniensegmentierung aus Punktwolken für Faserverbundsysteme. In (Masterarbeit), Geodätisches Institut, Universität Stuttgart.
    3. Müller, T., & Di Bari, R. (2022). Akustisches Verhalten von Holzgeschossdecken ökologisch neu gestalten. In Fortschritte der Akustik - DAGA 2022. Deutsche Gesellschaft für Akustik e.V. (DEGA).
    4. Schwieger, V., Zhang, L., Lerke, O., & Balangé, L. (2022). The Research Cluster Integrative Computational Design and Construction (IntCDC) – Current Engineering Geodetic Contribution. XXVII FIG Congress 2022, Warsaw, Poland.
  2. 2021

    1. Reischl, S. (2021). Digital workflows for predictive Life Cycle Assessment. A case study of a lightweight timber building. In Master Thesis at Institute for Acoustics and Building Physics.
  3. 2020

    1. Bayer, C. (2020). Evaluation of environmental profiles of construction components by considering uncertainties in a life cycle assessment. In Master Thesis at Institute for Acoustics and Building Physics.
    2. Carolin, B. (2020). Evaluation of environmental profiles of construction components by considering uncertainties in a life cycle assessment. In Master Thesis at Institute for Acoustics and Building Physics.
    3. Kropp, C. (2020). Embedded Humanism: Chancen und Risiken von STIR für eine transformative TA. In R. Lindner, M. Decker, E. Ehrensperger, H. N., S. Lingner, C. Scherz, & M. Sotoudeh (Eds.), Gesellschaftliche Transformation: Gegenstand oder Aufgabe der Technikfolgenabschätzung. (pp. 119–131). nomos.
    4. Yang, Y. (2020). Investigation for position determination of hollow sphere integrated in concrete components during component production.
  4. 2019

    1. Schwieger, V., & Zhang, L. (2019). Qualität in der Ingenieurgeodäsie – Begriff und Modellierung. Qualitätssicherung Geodätischer Mess- Und Auswerteverfahren 2019, 180. DVW-Seminar.

DATA SETS

  1. 2023

    1. Gil Pérez, M., Zechmeister, C., Kannenberg, F., Mindermann, P., Balangé, L., Guo, Y., Hügle, S., Gienger, A., Forster, D., Bischoff, M., Tarín, C., Middendorf, P., Schwieger, V., Gresser, G. T., Menges, A., & Knippers, J. (2023). Object model data sets of the case study specimens for the computational co-design framework for coreless wound fibre-polymer composite structures. DaRUS. https://doi.org/10.18419/darus-3375
    2. Gil Pérez, M., Mindermann, P., Zechmeister, C., Forster, D., Guo, Y., Hügle, S., Kannenberg, F., Balangé, L., Schwieger, V., Middendorf, P., Bischoff, M., Menges, A., Gresser, G. T., & Knippers, J. (2023). Post-processed and normalized data sets for the data processing, analysis, and evaluation methods for co-design of coreless filament-wound structures. DaRUS. https://doi.org/10.18419/darus-3449

  

To the top of the page