Distributed Fabrication for Fibrous Networks
August Lehrecke, Cody Tucker and Xiliu Yang
Supervisor: Achim Menges, Jan Knippers
Tutors: Rebeca Duque Estrada, Mathias Maierhofer
The Master's Thesis Grant Award winning team with tutors
The research expands the design and fabrication space of fibre structures, through a multi-agent system inspired by bobbin lace making. It proposes a novel material system based on spatial fibre interactions, facilitating the creation of multiple topologies within a single structure. Through cyber-physical coordination, mobile robots and bobbins fabricate using a parallel, continuous logic while maintaining high material programmability. State of the art manufacturing for filament structures are constrained by machine size, rigid frames, and logic of discrete assembly, limiting the variety and adaptability of fibre systems in architecture. This research proposes a flexible process that can achieve hybrid fibre topologies, thereby creating novel architectural qualities. The interlocking fibre interactions allow the structure to retain its topology in a collapsed state, and therefore can be flat-packed for transport and post-tensioned on site. This open-ended system creates new design and fabrication possibilities for fibre systems in architecture, enabling greater scalability and complexity.
Contact
Karolin Tampe-Mai
Dipl.-Ing.Graduate School & Early Career